Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Immunol ; 14: 1252367, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37885880

RESUMEN

Since the start of the SARS-CoV-2 pandemic, the rapid replacement of one lineage by another has been observed. Indeed, SARS-CoV-2 is evolving through a quasispecies mechanism leading to post-infection mutation selection under positive evolutionary pressure (host-driven viral evolution). These mutations may reduce the effectiveness of the specific neutralizing immune response against the virus. We provide here evidence that apart from the selection of SARS-CoV-2 variants by the immune system, selection by the cellular receptor can just as well select variants which escape neutralization.


Asunto(s)
Enzima Convertidora de Angiotensina 2 , COVID-19 , Humanos , Alelos , Enzima Convertidora de Angiotensina 2/genética , COVID-19/inmunología , SARS-CoV-2
2.
Front Microbiol ; 14: 1199561, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37520374

RESUMEN

Like other coronaviruses, SARS-CoV-2 has ability to spread through human-to-human transmission and to circulate from humans to animals and from animals to humans. A high frequency of SARS-CoV-2 mutations has been observed in the viruses isolated from both humans and animals, suggesting a genetic fitness under positive selection in both ecological niches. The most documented positive selection force driving SARS-CoV-2 mutations is the host-specific immune response. However, after electrostatic interactions with lipid rafts, the first contact between the virus and host proteins is the viral spike-cellular receptor binding. Therefore, it is likely that the first level of selection pressure impacting viral fitness relates to the virus's affinity for its receptor, the angiotensin I converting enzyme 2 (ACE2). Although sufficiently conserved in a huge number of species to support binding of the viral spike with enough affinity to initiate fusion, ACE2 is highly polymorphic both among species and within a species. Here, we provide evidence suggesting that when the viral spike-ACE2 receptor interaction is not optimal, due to host-switching, mutations can be selected to improve the affinity of the spike for the ACE2 expressed by the new host. Notably, SARS-CoV-2 is mutation-prone in the spike receptor binding domain (RBD), allowing a better fit for ACE2 orthologs in animals. It is possibly that this may also be true for rare human alleles of ACE2 when the virus is spreading to billions of people. In this study, we present evidence that human subjects expressing the rare E329G allele of ACE2 with higher allele frequencies in European populations exhibit a improved affinity for the SARS-CoV-2 spike N501Y variant of the virus. This may suggest that this viral N501Y variant emerged in the human population after SARS-CoV-2 had infected a human carrying the rare E329G allele of ACE2. In addition, this viral evolution could impact viral replication as well as the ability of the adaptive humoral response to control infection with RBD-specific neutralizing antibodies. In a shifting landscape, this ACE2-driven genetic drift of SARS-CoV-2 which we have named the 'boomerang effect', could complicate the challenge of preventing COVID with a SARS-CoV-2 spike-derived vaccine.

3.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37446087

RESUMEN

Having previously shown that soluble E-cadherin (sE-cad) is found in sera of Q fever patients and that infection of BeWo cells by C. burnetii leads to modulation of the E-cad/ß-cat pathway, our purpose was to identify which sheddase(s) might catalyze the cleavage of E-cad. Here, we searched for a direct mechanism of cleavage initiated by the bacterium itself, assuming the possible synthesis of a sheddase encoded in the genome of C. burnetii or an indirect mechanism based on the activation of a human sheddase. Using a straightforward bioinformatics approach to scan the complete genomes of four laboratory strains of C. burnetii, we demonstrate that C. burnetii encodes a 451 amino acid sheddase (CbHtrA) belonging to the HtrA family that is differently expressed according to the bacterial virulence. An artificial CbHtrA gene (CoxbHtrA) was expressed, and the CoxbHtrA recombinant protein was found to have sheddase activity. We also found evidence that the C. burnetii infection triggers an over-induction of the human HuHtrA gene expression. Finally, we demonstrate that cleavage of E-cad by CoxbHtrA on macrophages-THP-1 cells leads to an M2 polarization of the target cells and the induction of their secretion of IL-10, which "disarms" the target cells and improves C. burnetii replication. Taken together, these results demonstrate that the genome of C. burnetii encodes a functional HtrA sheddase and establishes a link between the HtrA sheddase-induced cleavage of E-cad, the M2 polarization of the target cells and their secretion of IL-10, and the intracellular replication of C. burnetii.


Asunto(s)
Proteínas Bacterianas , Coxiella burnetii , Humanos , Coxiella burnetii/enzimología , Coxiella burnetii/genética , Coxiella burnetii/patogenicidad , Interleucina-10/metabolismo , Macrófagos/microbiología , Fiebre Q/microbiología , Fiebre Q/fisiopatología , Células THP-1/microbiología , Cadherinas/metabolismo , Genoma Bacteriano/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas Recombinantes/genética , Interacciones Microbiota-Huesped , Serina Endopeptidasas/genética , Serina Endopeptidasas/metabolismo , Escherichia coli/genética
4.
Pathogens ; 12(5)2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37242383

RESUMEN

The human immune repertoire retains the molecular memory of a very great diversity of target antigens (epitopes) and can recall this upon a second encounter with epitopes against which it has previously been primed. Although genetically diverse, proteins of coronaviruses exhibit sufficient conservation to lead to antigenic cross-reactions. In this review, our goal is to question whether pre-existing immunity against seasonal human coronaviruses (HCoVs) or exposure to animal CoVs has influenced the susceptibility of human populations to SARS-CoV-2 and/or had an impact upon the physiopathological outcome of COVID-19. With the hindsight that we now have regarding COVID-19, we conclude that although antigenic cross-reactions between different coronaviruses exist, cross-reactive antibody levels (titers) do not necessarily reflect on memory B cell frequencies and are not always directed against epitopes which confer cross-protection against SARS-CoV-2. Moreover, the immunological memory of these infections is short-term and occurs in only a small percentage of the population. Thus, in contrast to what might be observed in terms of cross-protection at the level of a single individual recently exposed to circulating coronaviruses, a pre-existing immunity against HCoVs or other CoVs can only have a very minor impact on SARS-CoV-2 circulation at the level of human populations.

5.
Viruses ; 15(5)2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37243131

RESUMEN

The benefits of SARS-CoV-2 spike mRNA vaccines are well known, including a significant decline in COVID-19 morbidity and a decrease in the mortality rate of SARS-CoV-2 infected persons. However, pharmacovigilance studies have revealed the existence of rare cases of cardiovascular complications after mass vaccination using such formulations. Cases of high blood pressure have also been reported but were rarely documented under perfectly controlled medical supervision. The press release of these warning signals triggered a huge debate over COVID-19 vaccines' safety. Thereby, our attention was quickly focused on issues involving the risk of myocarditis, acute coronary syndrome, hypertension and thrombosis. Rare cases of undesirable post-vaccine pathophysiological phenomena should question us, especially when they occur in young subjects. They are more likely to occur with inappropriate use of mRNA vaccine (e.g., at the time when the immune response is already very active during a low-noise infection in the process of healing), leading to angiotensin II (Ang II) induced inflammation triggering tissue damage. Such harmful effects observed after the COVID-19 vaccine evoke a possible molecular mimicry of the viral spike transiently dysregulating angiotensin converting enzyme 2 (ACE2) function. Although the benefit/risk ratio of SARS-CoV-2 spike mRNA vaccine is very favorable, it seems reasonable to suggest medical surveillance to patients with a history of cardiovascular diseases who receive the COVID-19 vaccine.


Asunto(s)
Trastornos de la Coagulación Sanguínea , COVID-19 , Hipertensión , Humanos , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , SARS-CoV-2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Sistema Renina-Angiotensina/fisiología , Peptidil-Dipeptidasa A/metabolismo , Imitación Molecular , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
6.
Front Microbiol ; 13: 1042200, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36519165

RESUMEN

It has been known for many years that the angiotensin-converting enzyme 2 (ACE2) is a cell surface enzyme involved in the regulation of blood pressure. More recently, it was proven that the severe acute respiratory syndrome coronavirus (SARS-CoV-2) interacts with ACE2 to enter susceptible human cells. This functional duality of ACE2 tends to explain why this molecule plays such an important role in the clinical manifestations of coronavirus disease 2019 (COVID-19). At the very start of the pandemic, a publication from our Institute (entitled "ACE2 receptor polymorphism: susceptibility to SARS-CoV-2, hypertension, multi-organ failure, and COVID-19 disease outcome"), was one of the first reviews linking COVID-19 to the duplicitous nature of ACE2. However, even given that COVID-19 pathophysiology may be driven by an imbalance in the renin-angiotensin system (RAS), we were still far from understanding the complexity of the mechanisms which are controlled by ACE2 in different cell types. To gain insight into the physiopathology of SARS-CoV-2 infection, it is essential to consider the polymorphism and expression levels of the ACE2 gene (including its alternative isoforms). Over the past 2 years, an impressive amount of new results have come to shed light on the role of ACE2 in the pathophysiology of COVID-19, requiring us to update our analysis. Genetic linkage studies have been reported that highlight a relationship between ACE2 genetic variants and the risk of developing hypertension. Currently, many research efforts are being undertaken to understand the links between ACE2 polymorphism and the severity of COVID-19. In this review, we update the state of knowledge on the polymorphism of ACE2 and its consequences on the susceptibility of individuals to SARS-CoV-2. We also discuss the link between the increase of angiotensin II levels among SARS-CoV-2-infected patients and the development of a cytokine storm associated microvascular injury and obstructive thrombo-inflammatory syndrome, which represent the primary causes of severe forms of COVID-19 and lethality. Finally, we summarize the therapeutic strategies aimed at preventing the severe forms of COVID-19 that target ACE2. Changing paradigms may help improve patients' therapy.

7.
One Health ; 15: 100429, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36060458

RESUMEN

SARS-CoV-2, the virus responsible for COVID-19 in humans, can efficiently infect a large number of animal species. Like any virus, and particularly RNA viruses, SARS-CoV-2 undergoes mutations during its life cycle some of which bring a selective advantage, leading to the selection of a given lineage. Minks are very susceptible to SARS-CoV-2 and owing to their presence in mass rearing, they make a good model for studying the relative importance of mutations in viral adaptation to host species. Variants, such as the mink-selected SARS-CoV-2 Y453F and D614G or H69del/V70del, Y453F, I692V and M1229I were identified in humans after spreading through densely caged minks. However, not all mink-specific mutations are conserved when the virus infects human populations back. Many questions remain regarding the interspecies evolution of SARS-CoV-2 and the dynamics of transmission leading to the emergence of new variant strains. We compared the human and mink ACE2 receptor structures and their interactions with SARS-CVoV-2 variants. In minks, ACE2 presents a Y34 amino acid instead of the H34 amino acid found in the human ACE2. H34 is essential for the interaction with the Y453 residue of the SARS-CoV-2 Spike protein. The Y453F mink mutation abolishes this conflict. A series of 18 mutations not involved in the direct ACE2 interaction was observed in addition to the Y453F and D614G in 16 different SARS-CoV-2 strains following bidirectional infections between humans and minks. These mutations were not random and were distributed into five different functional groups having an effect on the kinetics of ACE2-RD interaction. The interspecies transmission of SARS-CoV-2 from humans to minks and back to humans, generated specific mutations in each species which improved the affinity for the ACE2 receptor either by direct mutation of the core 453 residue or by associated compensatory mutations.

8.
Med Sci (Paris) ; 38(6-7): 600-607, 2022.
Artículo en Francés | MEDLINE | ID: mdl-35766859

RESUMEN

Since the beginning of the COVID-19 pandemic, the question of the origin of this virus has been the subject of a vivid controversy. It is the question of the "origin" itself which is biased. Darwin showed that there is no determined origin to any animal or plant species, simply an evolutionary and selective process. The same is true for viruses, there is no origin, but an evolutionary process. Viruses circulate from host to host, animals or humans. Pandemic viruses are already circulating in humans and evolving before the onset of disease. This evolutionary process then continues and gives rise to successive variants. The solution is not to target the disease or the putative causative agent but rather to address the process of disease emergence.


Title: Le virus SARS-CoV-2 n'a pas « d'origine ¼. Abstract: Depuis le début de la pandémie de COVID-19, la question de l'origine de ce virus fait l'objet d'une vive polémique. C'est la question de « l'origine ¼ qui est biaisée. Darwin a montré qu'il n'y a pas d'origine déterminée à aucune espèce animale ou végétale, simplement un processus évolutif et sélectif. Il en est de même pour les virus, il n'y a pas d'origine, mais un processus évolutif. Les virus circulent d'hôte à hôte, animaux ou humains. Les virus pandémiques circulent déjà chez l'homme et évoluent avant l'apparition d'une maladie. Ce processus évolutif se poursuit et donne naissance à des variants successifs. La solution n'est pas de cibler la maladie ou le possible agent causal, mais plutôt de cibler le processus d'émergence de la maladie lui-même.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , Pandemias
11.
Environ Res ; 207: 112173, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34626592

RESUMEN

Since the beginning of the COVID-19 pandemic in 2020 caused by SARS-CoV-2, the question of the origin of this virus has been a highly debated issue. Debates have been, and are still, very disputed and often violent between the two main hypotheses: a natural origin through the "spillover" model or a laboratory-leak origin. Tenants of these two options are building arguments often based on the discrepancies of the other theory. The main problem is that it is the initial question of the origin itself which is biased. Charles Darwin demonstrated in 1859 that all species are appearing through a process of evolution, adaptation and selection. There is no determined origin to any animal or plant species, simply an evolutionary and selective process in which chance and environment play a key role. The very same is true for viruses. There is no determined origin to viruses, simply also an evolutionary and selective process in which chance and environment play a key role. However, in the case of viruses the process is slightly more complex because the "environment" is another living organism. Pandemic viruses already circulate in humans prior to the emergence of a disease. They are simply not capable of triggering an epidemic yet. They must evolve in-host, i.e. in-humans, for that. The evolutionary process which gave rise to SARS-CoV-2 is still ongoing with regular emergence of novel variants more adapted than the previous ones. The real relevant question is how these viruses can emerge as pandemic viruses and what the society can do to prevent the future emergence of pandemic viruses.


Asunto(s)
COVID-19 , Virus , Animales , Humanos , Pandemias , SARS-CoV-2
12.
Environ Res ; 204(Pt B): 112141, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34597664

RESUMEN

The origin of SARS-CoV-2 is still the subject of a controversial debate. The natural origin theory is confronted to the laboratory leak theory. The latter is composite and comprises contradictory theories, one being the leak of a naturally occurring virus and the other the leak of a genetically engineered virus. The laboratory leak theory is essentially based on a publication by Rahalkar and Bahulikar in 2020 linking SARS-CoV-2 to the Mojiang mine incident in 2012 during which six miners fell sick and three died. We analyzed the clinical reports. The diagnosis is not that of COVID-19 or SARS. SARS-CoV-2 was not present in the Mojiang mine. We also bring arguments against the laboratory leak narrative.


Asunto(s)
COVID-19 , Accidentes , Humanos , Laboratorios , SARS-CoV-2
13.
Front Immunol ; 13: 989707, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36618387

RESUMEN

Adaptive immunity is a sophisticated form of immune response capable of retaining the molecular memory of a very great diversity of target antigens (epitopes) as non-self. It is capable of reactivating itself upon a second encounter with an immunoglobulin or T-cell receptor antigen-binding site with a known epitope that had previously primed the host immune system. It has long been considered that adaptive immunity is a highly evolved form of non-self recognition that appeared quite late in speciation and complemented a more generalist response called innate immunity. Innate immunity offers a relatively non-specific defense (although mediated by sensors that could specifically recognize virus or bacteria compounds) and which does not retain a memory of the danger. But this notion of recent acquisition of adaptive immunity is challenged by the fact that another form of specific recognition mechanisms already existed in prokaryotes that may be able to specifically auto-protect against external danger. This recognition mechanism can be considered a primitive form of specific (adaptive) non-self recognition. It is based on the fact that many archaea and bacteria use a genome editing system that confers the ability to appropriate viral DNA sequences allowing prokaryotes to prevent host damage through a mechanism very similar to adaptive immunity. This is indistinctly called, 'endogenization of foreign DNA' or 'viral DNA predation' or, more pictorially 'DNA cannibalism'. For several years evidence has been accumulating, highlighting the crucial role of endogenization of foreign DNA in the fundamental processes related to adaptive immunity and leading to a change in the dogma that adaptive immunity appeared late in speciation.


Asunto(s)
Bacterias , Inmunidad Innata , Secuencia de Bases , Inmunidad Innata/fisiología , Archaea/genética , Proteínas del Sistema Complemento , Antígenos
14.
Front Microbiol ; 12: 675528, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34616371

RESUMEN

The rapid spread of SARS-CoV-2 variants has quickly spanned doubts and the fear about their ability escape vaccine protection. Some of these variants initially identified in caged were also found in humans. The claim that these variants exhibited lower susceptibility to antibody neutralization led to the slaughter of 17 million minks in Denmark. SARS-CoV-2 prevalence tests led to the discovery of infected farmed minks worldwide. In this study, we revisit the issue of the circulation of SARS-CoV-2 variants in minks as a model of sarbecovirus interspecies evolution by: (1) comparing human and mink angiotensin I converting enzyme 2 (ACE2) and neuropilin 1 (NRP-1) receptors; (2) comparing SARS-CoV-2 sequences from humans and minks; (3) analyzing the impact of mutations on the 3D structure of the spike protein; and (4) predicting linear epitope targets for immune response. Mink-selected SARS-CoV-2 variants carrying the Y453F/D614G mutations display an increased affinity for human ACE2 and can escape neutralization by one monoclonal antibody. However, they are unlikely to lose most of the major epitopes predicted to be targets for neutralizing antibodies. We discuss the consequences of these results for the rational use of SARS-CoV-2 vaccines.

15.
Front Med (Lausanne) ; 8: 737602, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34540874

RESUMEN

Since the start of COVID-19 pandemic the Republic of Djibouti, in the horn of Africa, has experienced two epidemic waves of the virus between April and August 2020 and between February and May 2021. By May 2021, COVID-19 had affected 1.18% of the Djiboutian population and caused 152 deaths. Djibouti hosts several foreign military bases which makes it a potential hot-spot for the introduction of different SARS-CoV-2 strains. We genotyped fifty three viruses that have spread during the two epidemic waves. Next, using spike sequencing of twenty-eight strains and whole genome sequencing of thirteen strains, we found that Nexstrain clades 20A and 20B with a typically European D614G substitution in the spike and a frequent P2633L substitution in nsp16 were the dominant viruses during the first epidemic wave, while the clade 20H South African variants spread during the second wave characterized by an increase in the number of severe forms of COVID-19.

16.
Front Med (Lausanne) ; 8: 663708, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34552938

RESUMEN

Coronavirus disease 2019 (COVID-19) is now at the forefront of major health challenge faced globally, creating an urgent need for safe and efficient therapeutic strategies. Given the high attrition rates, high costs, and quite slow development of drug discovery, repurposing of known FDA-approved molecules is increasingly becoming an attractive issue in order to quickly find molecules capable of preventing and/or curing COVID-19 patients. Cyclosporin A (CsA), a common anti-rejection drug widely used in transplantation, has recently been shown to exhibit substantial anti-SARS-CoV-2 antiviral activity and anti-COVID-19 effect. Here, we review the molecular mechanisms of action of CsA in order to highlight why this molecule seems to be an interesting candidate for the therapeutic management of COVID-19 patients. We conclude that CsA could have at least three major targets in COVID-19 patients: (i) an anti-inflammatory effect reducing the production of proinflammatory cytokines, (ii) an antiviral effect preventing the formation of the viral RNA synthesis complex, and (iii) an effect on tissue damage and thrombosis by acting against the deleterious action of angiotensin II. Several preliminary CsA clinical trials performed on COVID-19 patients report lower incidence of death and suggest that this strategy should be investigated further in order to assess in which context the benefit/risk ratio of repurposing CsA as first-line therapy in COVID-19 is the most favorable.

17.
J Clin Med ; 10(15)2021 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-34362060

RESUMEN

Since summer 2020, SARS-CoV-2 strains at the origin of the COVID-19 pandemic have suddenly been replaced by new SARS-CoV-2 variants, some of which are highly transmissible and spread at a high rate. These variants include the Marseille-4 lineage (Nextclade 20A.EU2) in Europe, the 20I/501Y.V1 variant first detected in the UK, the 20H/501Y.V2 variant first detected in South Africa, and the 20J/501Y.V3 variant first detected in Brazil. These variants are characterized by multiple mutations in the viral spike protein that is targeted by neutralizing antibodies elicited in response to infection or vaccine immunization. The usual coronavirus mutation rate through genetic drift alone cannot account for such rapid changes. Recent reports of the occurrence of such mutations in immunocompromised patients who received remdesivir and/or convalescent plasma or monoclonal antibodies to treat prolonged SARS-CoV-2 infections led us to hypothesize that experimental therapies that fail to cure the patients from COVID-19 could favor the emergence of immune escape SARS-CoV-2 variants. We review here the data that support this hypothesis and urge physicians and clinical trial promoters to systematically monitor viral mutations by whole-genome sequencing for patients who are administered these treatments.

18.
Front Immunol ; 12: 625732, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34194422

RESUMEN

The etiological agent of COVID-19 SARS-CoV-2, is primarily a pulmonary-tropic coronavirus. Infection of alveolar pneumocytes by SARS-CoV-2 requires virus binding to the angiotensin I converting enzyme 2 (ACE2) monocarboxypeptidase. ACE2, present on the surface of many cell types, is known to be a regulator of blood pressure homeostasis through its ability to catalyze the proteolysis of Angiotensin II (Ang II) into Angiotensin-(1-7) [Ang-(1-7)]. We therefore hypothesized that SARS-CoV-2 could trigger variations of ACE2 expression and Ang II plasma concentration in SARS-CoV-2-infected patients. We report here, that circulating blood cells from COVID-19 patients express less ACE2 mRNA than cells from healthy volunteers. At the level of circulating cells, this ACE2 gene dysregulation mainly affects the monocytes, which also show a lower expression of membrane ACE2 protein. Moreover, soluble ACE2 (sACE2) plasma concentrations are lower in prolonged viral shedders than in healthy controls, while the concentration of sACE2 returns to normal levels in short viral shedders. In the plasma of prolonged viral shedders, we also found higher concentrations of Ang II and angiotensin I (Ang I). On the other hand, the plasma levels of Ang-(1-7) remains almost stable in prolonged viral shedders but seems insufficient to prevent the adverse effects of Ang II accumulation. Altogether, these data evidence that the SARS-CoV-2 may affect the expression of blood pressure regulators with possible harmful consequences on COVID-19 outcome.


Asunto(s)
Angiotensina II/sangre , Angiotensina I/sangre , Enzima Convertidora de Angiotensina 2/sangre , COVID-19/sangre , Fragmentos de Péptidos/sangre , Adulto , Enzima Convertidora de Angiotensina 2/genética , COVID-19/virología , Femenino , Perfilación de la Expresión Génica , Antígenos HLA-DR , Humanos , Receptores de Lipopolisacáridos , Masculino , Persona de Mediana Edad , Monocitos/inmunología , Monocitos/metabolismo , Proyectos Piloto , Estudios Prospectivos , ARN Mensajero , Esparcimiento de Virus
19.
Front Microbiol ; 12: 591535, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33790874

RESUMEN

The current Coronavirus Disease 2019 (COVID-19) pandemic, with more than 111 million reported cases and 2,500,000 deaths worldwide (mortality rate currently estimated at 2.2%), is a stark reminder that coronaviruses (CoV)-induced diseases remain a major threat to humanity. COVID-19 is only the latest case of betacoronavirus (ß-CoV) epidemics/pandemics. In the last 20 years, two deadly CoV epidemics, Severe Acute Respiratory Syndrome (SARS; fatality rate 9.6%) and Middle East Respiratory Syndrome (MERS; fatality rate 34.7%), plus the emergence of HCoV-HKU1 which causes the winter common cold (fatality rate 0.5%), were already a source of public health concern. Betacoronaviruses can also be a threat for livestock, as evidenced by the Swine Acute Diarrhea Syndrome (SADS) epizootic in pigs. These repeated outbreaks of ß-CoV-induced diseases raise the question of the dynamic of propagation of this group of viruses in wildlife and human ecosystems. SARS-CoV, SARS-CoV-2, and HCoV-HKU1 emerged in Asia, strongly suggesting the existence of a regional hot spot for emergence. However, there might be other regional hot spots, as seen with MERS-CoV, which emerged in the Arabian Peninsula. ß-CoVs responsible for human respiratory infections are closely related to bat-borne viruses. Bats are present worldwide and their level of infection with CoVs is very high on all continents. However, there is as yet no evidence of direct bat-to-human coronavirus infection. Transmission of ß-CoV to humans is considered to occur accidentally through contact with susceptible intermediate animal species. This zoonotic emergence is a complex process involving not only bats, wildlife and natural ecosystems, but also many anthropogenic and societal aspects. Here, we try to understand why only few hot spots of ß-CoV emergence have been identified despite worldwide bats and bat-borne ß-CoV distribution. In this work, we analyze and compare the natural and anthropogenic environments associated with the emergence of ß-CoV and outline conserved features likely to create favorable conditions for a new epidemic. We suggest monitoring South and East Africa as well as South America as these regions bring together many of the conditions that could make them future hot spots.

20.
Infect Genet Evol ; 95: 104812, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33744401

RESUMEN

While the COVID-19 pandemic continues to spread with currently more than 117 million cumulated cases and 2.6 million deaths worldwide as per March 2021, its origin is still debated. Although several hypotheses have been proposed, there is still no clear explanation about how its causative agent, SARS-CoV-2, emerged in human populations. Today, scientifically-valid facts that deserve to be debated still coexist with unverified statements blurring thus the knowledge on the origin of COVID-19. Our retrospective analysis of scientific data supports the hypothesis that SARS-CoV-2 is indeed a naturally occurring virus. However, the spillover model considered today as the main explanation to zoonotic emergence does not match the virus dynamics and somehow misguided the way researches were conducted. We conclude this review by proposing a change of paradigm and model and introduce the circulation model for explaining the various aspects of the dynamic of SARS-CoV-2 emergence in humans.


Asunto(s)
COVID-19/epidemiología , Genoma Viral , Modelos Estadísticos , Pandemias , SARS-CoV-2/genética , Zoonosis/epidemiología , Animales , COVID-19/transmisión , COVID-19/virología , Quirópteros/virología , Euterios/virología , Humanos , Modelos Genéticos , Estudios Retrospectivos , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/patogenicidad , Procesos Estocásticos , Zoonosis/transmisión , Zoonosis/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...